Infinitely many sign-changing solutions of a critical fractional equation
نویسندگان
چکیده
In this paper, we obtain results of nonexistence nonconstant positive solutions, and also existence an unbounded sequence sign-changing solutions for some critical problems involving conformally invariant operators on the unit sphere, in particular to fractional Laplacian operator Euclidean space. Our arguments are based a reduction initial problem space equivalent standard sphere vice versa, what together with blow up arguments, variant Pohozaev’s type identity, refinement regularity operators, finally, by exploiting symmetries sphere.
منابع مشابه
Infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C1-manifolds, to prove our main results.
متن کاملinfinitely many solutions for a bi-nonlocal equation with sign-changing weight functions
in this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. we use some natural constraints and the ljusternik-schnirelman critical point theory on c1-manifolds, to prove our main results.
متن کاملInfinitely Many Solutions for Fractional Schrödinger-poisson Systems with Sign-changing Potential
In this article, we prove the existence of multiple solutions for following fractional Schrödinger-Poisson system with sign-changing potential (−∆)u+ V (x)u+ λφu = f(x, u), x ∈ R, (−∆)φ = u, x ∈ R, where (−∆)α denotes the fractional Laplacian of order α ∈ (0, 1), and the potential V is allowed to be sign-changing. Under certain assumptions on f , we obtain infinitely many solutions for this sys...
متن کاملInfinitely Many Solutions of Superlinear Elliptic Equation
and Applied Analysis 3 Lemma 6 (see [17]). Assume that |Ω| < ∞, 1 ≤ p, r ≤ ∞, f ∈ C(Ω×R), and |f(x, u)| ≤ c(1+|u|). Then for every
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata
سال: 2021
ISSN: ['1618-1891', '0373-3114']
DOI: https://doi.org/10.1007/s10231-021-01141-2